Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY BANGALORE

COURSE PLAN

Academic Year 2019-20

Program:	B E – Mechanical Engineering			
Semester :	7			
Course Code:	15ME71			
Course Title:	ENERGY ENGINEERING			
Credit / L-T-P:	04/3-2-0			
Total Contact Hours:	40			
Course Plan Author:	Naveen Kumar Pattar			

Academic Evaluation and Monitoring Cell

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA

Phone / Fax :+91 80 23721477 -STD- 080 23721315>

http://www.skit.org.in: skit1princi@gmail.com: >

Table of Contents

A. COURSE INFORMATION	3	
1. Course Overview		3
2. Course Content		
3. Course Material		4
4. Course Prerequisites		
5. Content for Placement, Profession, HE and GATE		5
B. OBE PARAMETERS	5	
1. Course Outcomes		5
2. Course Applications		6
3. Mapping And Justification		
4. Articulation Matrix		
5. Curricular Gap and Content		
6. Content Beyond Syllabus		9
C. COURSE ASSESSMENT	9	
1. Course Coverage		
2. Continuous Internal Assessment (CIA)		9
D1. TEACHING PLAN – 1 1	0	
Module - 1	0	
Module – 2	1	1
E1. CIA EXAM – 1	2	
a. Model Question Paper - 1	1	2
b. Assignment -1	1	3
D2. TEACHING PLAN - 2	6	
Module – 3	1	6
Module – 4	1	7
E2. CIA EXAM – 2	8	
a. Model Question Paper - 2	1	8
b. Assignment – 2		8
D3. TEACHING PLAN - 3		
Module – 5		0
E3. CIA EXAM – 3		
a. Model Question Paper - 3		
b. Assignment – 3		:1
F. EXAM PREPARATION	2	
1. University Model Question Paper	2	2
2. SEE Important Questions	2	3
G. Content to Course Outcomes	4	
1. TLPA Parameters	2	4
2. Concepts and Outcomes:	2	6

A. COURSE INFORMATION

1. Course Overview

Degree:	ME	Program:	ME
Semester:	VII	Academic Year:	2019-2020
Course Title:	ENERGY ENGINEERING	Course Code:	15ME71
Credit / L-T-P:	04/3-2-0	SEE Duration:	180 min
Total Contact Hours:	40 Hrs	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	1 / Module
Course Plan Author:	NAVEEN KUMAR PATTAR	Sign	Dt:
Checked By:	PRASANNA GOWDA	Sign	Dt:
CO Targets	CIA Target :90%	SEE Target:	85%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachin	Identified Module	Blooms
ule		g Hours	Concepts	Learning Levels
1	Thermal Energy conversion system: Review of energy scenario in India, General Philosophy and need of Energy, Different Types of Fuels used for steam generation. Equipment for burning coal in lump form, stokers, different types, Oil burners, Advantages and Disadvantages of using pulverized fuel. Equipment for preparation and burning of pulverized coal, unit system and bin System. Pulverized fuel furnaces, cyclone furnace, Coal and ash handling, Generation of steam Using forced circulation, high and supercritical pressures. Chimneys: Natural, forced, induced and balanced draft. Calculations and numerical involving height of chimney to produce a given draft. Cooling towers and Ponds. Accessories for the Steam generators such as Super heaters, De-super heater, control of super heaters. Economizers, Air per-heaters and re-heaters.		Energy conversion system and Accessories of stem generators	L2,L3
2	Diesel Engine Power System: Applications of Diesel Engines in Power field. Method of starting Diesel engines. Oil heaters, intake and exhaust system, Layout of diesel power plant. Hydro-Electric Energy Hydro graphs, flow duration and mass curves. Pen stock, water hammer, surge tanks, gates and valves. General layout of hydel power plants.	- - -	Power system and energy storage	L2,L3
3	Solar Energy: Fundamentals; Solar Radiation; Estimation of solar radiation on horizontal and inclined surfaces. Measurement of solar radiation data, Solar Thermal systems. Introduction; Basics of thermodynamics and heat transfer; Flat plate collector; Evacuated Tubular Collector; Solar air collector. Solar concentrator; Solar distillation; Solar cooker. Solar refrigeration and air conditioning;Thermal energy storage systems, Solar Photo voltaic systems. Introduction; Solar cell Fundamentals; Characteristics and classification. Solar cell: Module,panel and Array construction; Photo voltaic thermal systems.		Renewable energy	L4
4	Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and power from wind. Major problems associated with wind power, wind machines. Types of wind machines and their characteristics, horizontal and Vertical axis wind mills. Coefficient of performance of a wind mill rotor. Numerical Example. Tidal Power: Tides and waves as energy suppliers and their mechanics. Fundamental characteristics of tidal power, harnessing tidal energy, limitations.	•	Forms of energy and alternate source	L2

	Biomass Energy: Introduction; Photosynthesis Process; Bio fuels; Biomass Resources. Biomass conversion technologies; Urban waste to energy. Conversion; Biomass gasification. Green Energy: Introduction: Fuel cells: Overview; Classification of fuel cells. Fuel cell thermodynamics Nuclear, ocean. MHD, thermo electric and geothermal energy applications: Zero energy Concept.		Conversion technologies	L2
-	Total	40	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C). 1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

- 2. Design: Simulation and design tools used software tools used ; Free / open source
- 3. Research: Recent developments on the concepts publications in journals; conferences etc.

Module	Details	Chapters	Availability
S		in book	-
	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	B H Khan,Non conventional energy resources,3rd Edition, McGraw Hill Education.		In Lib
3	S.P.Sukhatme, Solar energy: Principles of Thermal Collection and storage, Tata McGraw Hill(1984).	3	In Lib
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
	Solar Energy utilization-G. D. Rai	3	In dept
	Power plant Engineering ,Domakundawar,Dhanpath Rai sons.2003	4	In dept
	Energy Engineering by Dr.P.B.Nagaraj;	1,2,4,5	In dept
	Concept Videos or Simulation for Understanding		*
1			
	https://www.fmtv.com > watch > overfed-and-undernourished		
1	encyclopedia.che.engin.umich.edu > Energy Transfer > Cooling Towers		
2	https://www.powermag.com > diesel-gen sets-aim-at-the-future		
2	https://www.acciona-energia.com > other-technologies > hydro power > major-projects		
	https://www.delta-t.co.uk > Products > Solar Energy > Solar Radiation Research		
3	https://www.luminousindia.com > solar-pv-panel		
4	https://study.com > academy > lesson > what-are-tides-causes-effects		
5	https://www.studentenergy.org > topics > biomass		
	https://www.freudenberg.com > technologies > innovation > fuel-cell- technology		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the follow	wing Courses / Topics with described Conten	nt

Modu	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
les	Code					Level

4	15MAT21	Engineering Mathematics	Engineering calculus	II	L2
3	15ME33	Basic thermodynamic s	Basic thermodynamics	III	L2
3	15ME57	Fluid Mechanics	Fluid Mechanics	IV	L2

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Modu	Topic / Description	Area	Remarks	Blooms
les				Level
1	Thermal Energy conversion system	Industry and	Seminar on different energy storage	L2
		GATE	systems	
4	Harnessing wind and tidal energy	GATE	NPTEL Videos	L2
2	Diesel Engine Power System and its	Industry and	Seminar on different lubrication	
	lubrication system	GATE	systems	

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

		eept.					
Modu	Course	Course Outcome	Teach.	Concept	Instr	Assessment	Blooms'
les	Code.#	At the end of the course, student	Hours		Method	Method	Level
		should be able to					
1	15ME71.1	Understand energy scenario, energy	05	Energy	Lecture	Chalk and	L2
		source and utilization		conversion		board	Understand
				system			
1	15ME71.2	Applying the knowledge of conversion	04	Accessories	Lecture/	Chalk and	L3
		methods		of stem	Tutorial	board	Apply
				generators			
2	15ME71.3	Understand Diesel Engine working and	03	Power	Lecture	Chalk and	L2
		layout		system		board	Understand
2	15ME71.4	Applying the knowledge of storage	04	energy	Lecture	Chalk and	L3
		plants		storage		board	Apply
3	15ME71.5	Illustrating the basic concepts of solar	08	Renewable	Lecture	Chalk and	L3
		radiation and analyze working of solar		energy		board	Apply
		pv models					
4	15ME71.6	Understanding the forms of energy	05	Forms of	Lecture/T	Chalk and	L3
		conversion from alternate source.		energy	utorial	board	Apply
4	15ME71.7	Able to describe the tidal and wave	03	Alternate	Lecture/T	Chalk and	L2
		energy		source	utorial	board	Understand
5	15ME71.8	Describe the photo synthesis process	04	Conversion	Lecture/T	Chalk and	L2
		and Biomass gasification		technologies	utorial	board	Understand
5	15ME71.9	Understanding the fuel cell concept and	04	Conversion	Lecture	Chalk and	L2
		applications.		technologies		board	Understand
-	-	Total	40	-	-	-	L2,L3

2. Course Applications

Modu	Application Area	CO	Level
les	Compiled from Module Applications.		
1	Energy conservation scenarios include rational use of energy policies in all economy sectors.	CO1	L2
1	use the evaporation of water to remove process heat and cool the working fluid	CO2	L2
2	Power generation for prime or standby backup power	CO3	L2

2	Energy storage is used in many applications, from building to concentrating power plants and	CO4	L3
	industry.		
3	Residential Homes. Holiday Properties. Central Power Stations. Water Pumping, lighting,	CO5	L2
	heating in the Developing World. Commercial buildings.		
4	Uses of power illustrating the basic concepts of solar radiation and analyze working of solar pv	CO6	L2
	modernization and power conversion		
4	useful forms of power, mainly electricity. Although not yet widely used, tidal energy has	CO7	L3
	potential for future electricity generation.		
5	Power application for rural electrification and captive use	CO8	L2
5	portable power generation, stationary power generation, and power for transportation.	CO9	L2

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

	npnsn			1	
Mod ules	Map	ping	Mapping Level	Justification for each CO-PO pair	Lev el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	L2	'Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to understand the different energy sources and there utilization to accomplish solutions to complex engineering_problems in Mechanical Engineering.	8
1	CO1	PO2	L3	^e Problem Analysis':Analyzing problems require knowledge / understanding different conversions of energy engineering fundamentals to accomplish solutions to complex engineering problems in Mechanical engineering.	3
2	CO2	PO1	L3	^c Engineering Knowledge: 'Acquisition of Engineering_Knowledge is required to understand the different Thermal energy storage systems_to accomplish solutions to complex engineering_problems in Mechanical Engineering	
2	CO2	PO2	L3	^e Problem Analysis': Analyzing problems require knowledge / understanding storage systems to accomplish solutions to complex engineering problems in Mechanical engineering.	1
3	CO3	PO1	L2	'Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to understand the diesel engine power plant in Mechanical Engineering.	L3
3	CO3	PO2	L2	^e Problem Analysis ² : Analyzing problems require knowledge / understanding diesel engine power plant,to accomplish solutions to complex engineering problems in Mechanical engineering.	
4	CO4	PO1	L3	'Engineering Knowledge:'Acquisition Knowledge of storage plants is required to understand hydroelectric power plant in Mechanical Engineering.	L2
4	CO4	PO2	L3	'Problem Analysis': Analyzing problems require knowledge / understanding storage plants in the hydro power plant systems to complex engineering problems in Mechanical engineering.	
5	CO5	PO1	L3	'Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to understand the basic concept of solar power plant to accomplish solutions to complex engineering_problems in Mechanical Engineering.	
5	CO5	PO2	L3	^e Problem Analysis ² : Analyzing problems in an solar Pv modules require knowledge / understanding problems in the soalr power plant in Mechanical engineering.	
6	CO6	PO1	L2	^e Engineering Knowledge: Acquisition of Engineering_Knowledge is required to understand the energy conversions from alternate source of energy in an complex engineering_problems in Mechanical Engineering.	
6	CO6	PO2	L3	'Problem Analysis': Analyzing problems require knowledge / understanding problems in conversion systems in an environment.	g L2
7	CO7	PO1	L3	⁶ Engineering Knowledge: Acquisition of Engineering_Knowledge is required to understand the tide and wave enrgy to accomplish solutions to complex engineering problems in Mechanical Engineering.	5
7	CO7	PO2	L3	^e Problem Analysis ² : Analyzing problems require knowledge / understanding problems in the different types of wave and tidal energy to complex engineering problems in Mechanical engineering.	5
8	CO8	PO1	L2	^c Engineering Knowledge: Acquisition of Engineering_Knowledge is required to understand the different biomass gasification process to complex engineering problems in Mechanical Engineering.	5
8	CO8	PO2	L2	Problem Analysis': Analyzing problems require knowledge / understanding	g L2
15ME7	71			Copyright ©2017. cAAS. All rights reserved. Page # 6 / 23	

			problems in the different gasifiers s in Mechanical engineering	
9	CO9	PO1	'Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to	
			understand the fuel cell principles to complex engineering problems in Mechanical	
			Engineering.	
9	CO9	PO2	Problem Analysis': Analyzing problems require knowledge / understanding problems in the different types of fuel cells to complex engineering problems in Mechanical engineering	

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

<u> </u>	omapping	with happing lever for each CO-1 O pair, with course average attainment.																
-	-	Course Outcomes				1			gran									-
Modu	CO.#	At the end of the course student	PO					PO	PO									Lev
les		should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	O 2	03	
1	15ME71.1	Understand energy scenario, energy	2	3														L2
		source and utilization																Und
																		ersta
																		nd
1	15ME71.2		3	2														L3
		conversion methods																App
				_														ly
2		Understand Diesel Engine working	2	3														L2
		and layout																Und
																		ersta
-	15) (2571.4		~	2														nd
2		Applying the knowledge of storage	2	3														L3
		plants																App
2	15115715		2	2														ly L2
3		Illustrating the basic concepts of solar		2														L3
		radiation and analyze working of solar pv models																App
3		Understanding the forms of energy	2	2														ly L3
3		conversion from alternate source.	3	2														
		conversion from alternate source.																App
4	15ME71.7	Able to describe the tidal and wave	2	3														ly L2
4		energy	-	5														Und
		energy																ersta
																		nd
4	15ME71.8	Describe the photo synthesis process	3	2														L2
		and Biomass gasification		-														Und
																		ersta
																		nd
5	15ME71.9	Understanding the fuel cell concept	2	1														L2
_		and applications.																Und
																		ersta
																		nd
-	15ME71	Average attainment (1, 2, or 3)																
L			I	I	l	I	l	l	L						l	1	I	ــــــ ا

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

1					
Modu	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
les					

COURSE PLAN - CAY 2018-19

1	Chimneys working details	NPTEL Videos	-	-	PO2
3	Construction of PV module	NPTEL Videos	-	-	PO2
	and an array				
5	Detailed study of fuel cell	NPTEL Videos	12/11/2019	Self	PO2

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Modu	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
les						
1	Different types of	Placement,	Presentation by	30/08/2019		PO1
	chimney and there	GATE,	students		Self	
	working principal	Higher				
		Study, .				
3	Construction of an	Placement,	Presentation	9/9/2019	Self	PO5
	array and PV Module	GATE,				
		Higher Study				

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.		No. o	of quest	ion in H	Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Thermal Energy conversion system	9	2	-	-	1	1	2	CO1, CO2	L2, L3
	Diesel Engine Power System and Hydro-Electric Energy	7	2	-	-	1	1	2	CO3, CO4	L2, L3
3	Solar energy	8	-	2	-	1	1	2	CO5,	L3
4	Wind Energy and Tidal power	8	-	2	-	1	1	2	CO6, C07	L2, L2
5	Biomass energy and Green energy	8	-	-	4	1	1	2	CO8, CO9	L2
-	Total	40	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	15	CO1, CO2, CO3, CO4	L2, L3, L2,L3
3, 4	CIA Exam – 2	15	CO5, CO6, CO7,	L4,L2,L2
5	CIA Exam – 3	15	CO8, CO9	L2, L2
1, 2	Assignment - 1	05	CO1, CO2, CO3, CO4	L2, L3, L2,L3
3, 4	Assignment - 2	05	CO5, CO6, CO7,	L3,L2,L2
5	Assignment - 3	05	CO8, CO9	L2, L2
1, 2	Seminar - 1	00		
3,4	Seminar - 2	00		
5	Seminar - 3	00		
	-			
	Final CIA Marks	20	CO1 to Co9	L2, L3

D1. TEACHING PLAN – 1

Module - 1

Title:	Thermal Energy conversion system:	Appr Time:	9 Hrs
а	Course Outcomes	-	Bloom
-	The student should be able to:	-	Level
1	Understand energy scenario, energy source and utilization	CO1	L2
2	Applying the knowledge of conversion methods	CO2	L3
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
1	Thermal Energy conversion system: Review of energy scenario in India, General Philosophy and need of Energy,	C01	L2
2	Different Types of Fuels used for steam generation. Equipment for burning coal in lump form.	C01	L2
3	stokers, different types, Oil burners, Advantages and Disadvantages of using pulverized fuel.	C01	L2
4	Equipment for preparation and burning of pulverized coal,	C01	L2
5	unit system and bin System. Pulverized fuel furnaces, cyclone furnace,	CO2	L3
6	Coal and ash handling, Generation of steam Using forced circulation, high and supercritical pressures	CO2	L3
7	Chimneys: Natural, forced, induced and balanced draft. Calculations and numerical involving height of chimney to produce a given draft.	CO2	L3
8	Cooling towers and Ponds. Accessories for the Steam generators such as Super heaters.	CO2	L3
9	De-super heater, control of super heaters. Economizers, Air per-heaters and re-heaters.	CO2	L3
с	Application Areas	СО	Level
1	Energy conservation scenarios include rational use of energy policies in all economy sectors.	CO1	L3
2	use the evaporation of water to remove process heat and cool the working fluid.	CO2	L3
d	Review Questions	-	-
-		-	-
1	Explain Review of energy scenario in India?	CO1	L2
2	Explain the Velox steam generator, with a neat sketch.	CO2	L3
3	Classify different types of Draughts and explain with a neat sketch the balanced draught.	CO2	L2
4	What is pulverized coal?	CO2	L2
5	Explain with sketch overfeed and underfeed principle of firing coal.?	CO2	L3
6	Sketch and explain a cyclone Burner with advantages and disadvantages.?	CO2	L3
7	Calculate the mass of flue gases flowing through the chimney when the draught produced is equal to 2 cm of water, temperature of flue gases is 300 °C and ambient temperature is 20°C. The flue gases formed per kg of fuel burnt are 25 kg. Neglect the losses and take the diameter of the chimney as 1.9 meter.	CO2	L3
8	Explain a typical hydraulic ash handling system, with neat sketch. List the advantages and disadvantages of pulverized fuel.	CO2	L2
9	Explain briefly about i) Economizer ii) Air preheater.	CO2	L2
10	Derive an expression for chimney height.	CO2	L3
e	Experiences	-	-
			I

Module – 2

Title:	Energy storage systems	Appr Time:	7Hrs
а	Course Outcomes	СО	Blooms
-		-	Level
1	Understand Diesel Engine working and layout	CO3	L2
2	Applying the knowledge of storing plants	CO4	L3
b	Course Schedule	-	-
Class N	o Portion covered per hour	-	-
11	Diesel Engine Power System Applications of Diesel Engines in Power field.	CO3	L2
12	Method of starting Diesel engines. Oil heaters, intake and exhaust system.	CO3	L2
13	Layout of diesel power plant.	CO3	L2
14	Hydro-Electric Energy Hydro graphs,	CO3	L2
15	flow duration and mass curves.	CO4	L3
16	Pen stock, water hammer, surge tanks, gates and valves.	CO4	L3
17	General layout of hydel power plants.	CO4	L2
С	Application Areas	CO	Level
3	Power generation for prime or standby backup power	CO3	L3
4	Energy storage is used in many applications, from building to concentrating power plants and industry.	CO4	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Draw a line diagram to show the layout of diesel power plant.	CO3	L2
2	Explain different methods of starting the diesel engine.	CO3	L3
3	For a diesel power station. Discuss briefly about the following:	CO3	L2
	(i) Cooling system		
	(ii) Lubricating system.		
4	How are the hydro-electric power plant classified? With a neat sketch, explain the pumped storage plant.?	CO4	L3
5	Give a brief note on i) Hydrograph ii) Flow duration curve.	CO4	L2
6	Draw a general layout of hydro — electric power plant and explain the functions of each part.	CO3	L3
7	Explain briefly about : i) Water hammer effect ii) Surge tank.	CO3	L2
8	Define the term Hydrograph and Unit Hydrographs.	CO3	L3
9	A catchment area of the dam used for hydroelectric station is 250 km2. The annual rainfall	CO4	L3
	is 125cm. If 70% of water is used for power generation in the dam, calculate the capacity		
	of power plant in MW. Assume that the turbine efficiency is 90% and generator efficiency is 95%. Neglect the losses.		
10	State the important factors to be considered while selecting the site for hydro – electric power plant.	CO4	L3
11	Explain different methods of starting of diesel engine.	CO4	L3
e	Experiences	-	-

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C	Code:	15ME71	Sem:	7	Marks:	30	Time:	75 minutes	5 minutes				
Cour	se:	Energy Eng	gineering										
-	-	Note: Ansv	ver all ques	tions, each	carry equal mar	ks. Mod	ule : 1, 2	Marks	CO	Level			
1		Explain Wi advantages		firing coal. write	its 8	1	L2						
	b	What is Pu system?	lverized co	al? Explair	n Pneumatic or V	/acuum e	extraction ash handli	ng 7	1	L2			
				OR									
2	a	Explain wi towers?	th a neat s	sketch worl	king of natural o	lraught a	nd hyperbolic cooli	ng 7	2	L2			

	b	20kg of flues per flue gases and am diameter of chimi	produced in mm of water kg of fuel burnt in com bient temperature of air a ney as 1.5m and 30% of gases passing through chi	he temperature of the espectively. Assuming	8	2	L3		
3	а	Draw a line dia Advantages and d	igram to show the lay	out of Diesel pow	ver plant? Write the	7	3	L2	
	b	Explain with nea	Explain with neat sketch, Individual pump injection system and common njection system in diesel power plant?						
4	а		State the important factors to be considered while selecting the site for hydelectric power plant? What are the merits and demerits?						
	b	The run off data o		8	4	L3			
		Month	Mean Discharge in	Month	Mean Discharge i				
			Millions of cu.m/month		millions c cu.m/month				
		January	40	July	70				
		February	25	August	100				
		March	20	September	105				
		April	10	October	60				
		May	0	November	50				
		June	50	December	40				
		(a) Draw Hydrogr(b) Draw flow dur(c) Find the Poweoverall efficiency	available is 100m and						

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

				Mode	el Assignme	ent Questio	ons				
Crs C	ode:	15ME71	Sem:	VII	Marks:	5	Time:	90 – 120 n	ninutes		
Cours	se:	Energy E	ngineering			Modul	e : 1, 2				
Note:	Each s	tudent to a	answer 2-3 assig	nments. Eac	h assignme	nt carries	equal mark.				
SNo	I	JSN		Assi	gnment De	scription		Marks	СО	Level	
1			Explain Review	v of energy s	cenario in I	ndia?		5	CO1	L2	
2			What do you aspects.	understand b	by energy c	conservatio	on?Explain its vario	ıs 5	CO2	L3	
3			Explain Variou	s aspects of e	energy cons	ervation.		5	CO2	L3	
4			What do you u	nderstand by	energy stor	rage.		5	CO1	L3	
5			Explain various	s source of en	nergy.			5	CO1	L2	
6			Explain with a	neat sketch s	preader sto	ker.		5	CO2	L3	
7			With a neat ske	tch explain t	he pulveriz	ed fuel firi	ng.	5	CO2	L3	
8			Explain unit sy	stem write th	ne advantag	es and disa	advantages.	5	CO2	L3	
9			Explain central	system write	e the advan	tages and o	lisadvantages.	5	CO2	L2	
10			Explain the Vel	ox steam ger	nerator, with	h a neat sk	etch.	5	CO2	L3	
11			Classify differed balanced draug	* 1	Draughts ar	nd explain	with a neat sketch th	ne 5	CO2	L3	

Copyright ©2017. cAAS. All rights reserved.

		COURSET	LAN - CAI 2010-19							
12	Derive an expre	ession for chimney	height.	[5	CO1	L3			
13		etch overfeed and		le of firing coal.?	5	CO1	L2			
14	-	lain a cyclone Bur	<u> </u>	<u> </u>	_	CO2	L3			
15	Calculate the m draught produc 300 °C and am of fuel burnt ar	hass of flue gases f ed is equal to 2 cm bient temperature e 25 kg. Neglect t	n of water, temperatis 20°C. The flue	e chimney when the ature of flue gases is gases formed per kg the diameter of the	5	CO2	L3			
16				ith neat sketch. List	5	CO2	L3			
17	· · · · · ·	y about i) Econo	<u> </u>	eheater iii)What is	5	CO2	L2			
18	Draw a line dia	gram to show the l	ayout of diesel po	wer plant.	5	CO3	L3			
19		nt methods of start			7	CO3	L3			
20		oower station. Dis (ii) Lubricating sy		ut the following:(i)	7	CO3	L3			
21	How are the hy		r plant classified?	With a neat sketch,	7	CO4	L2			
22		te on i) Hydrograp		n curve.	7	CO4	L3			
23		layout of hydro -		plant and explain the	5					
24		about:i) Water har	nmer effect ii) Sur	ge tank.	5	CO4	L3			
25		Hydrograph and				CO4	L2			
26	A catchment ar The annual ra generation in t Assume that th 95%. Neglect th	5	CO4	L3						
27		tant factors to be	considered while s	selecting the site for	5	CO4	L3			
28		nt methods of start	ing of diesel engin	ne.	5	CO4	L3			
29	With a neat ske	tch explain natural	draught spray		5	CO4	L3			
30	Explain the fun	ctions of desuper h	neater		5	CO4	L3			
31		iesel and Thermal			5	CO4	L2			
32	v 1	Lubricating syster	Ų		5		L3			
33	Write advantag	es and dis advanta	ges of flow duration	on curves	5	CO2 CO3 CO3 CO3 CO3 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4	L3			
34	Month	Discharge m ³ /sec	Month	Discharge m ³ /sec	5	CO4	L3			
	January	200	July	2000						
	February	450	August	2400						
	March	600	September	1800						
	April	1200	October	1200						
	May	1500	November	800						
	June	1600	December	400						
	draw the hydraw the hy	dro graph and f	low duration cu							
35	The monthly of below	lischarge for 12 r	nonths of a partic	cular site as shown	5	CO4	L3			
	Month	Discharge m ³ /sec	Month	Discharge m ³ /sec						
				1000						
	January	100	July	1000						

1	l	I		1			
	March	325	September	850			
	April	600	October	600			
	May	750	November	400			
	June	825	December	200			
	average flow.b at mean flow of	h for the given	a curve c)The p lable head is 80	ower available Ometers at the			
36	The run off data o	f a river at a partic	cular site is tabula	ted below	5	CO4	L3
	Month	Mean discharge in millions of Cu.m/month	Month	Mean discharge in millions of Cu.m/month			
	January	40	July	70			
	February	25	August	100			
	March	20	September	105			
	April	10	October	60			
	May	00	November	50			
	June	50	December	40			
37	Flow duration mean flow if the efficiency of g For a particular si 10months find the	e maximum flow	ne power in M ble is 100m and % owing run off dat v available throug	W available at	5	CO4	L3
	Month	t the site is 100mi Discharge(Mi		Discharge(Mi			
	Wohui	llions of m ³ /month)	Wonth	llions of m ³ /month)			
	1	200	6	180			
	2	100	7	40			
	3	20	8	280			
	4	20	9	60			
	5	260	10	120			
38	hydro power plar flow in a river to	nt to be used as the constant at 20	10hrs peaking pla m ³ /sec.calculate t	of a run off river ant,assuming daily he pond age factor verall efficiency is	5	CO4	L3
39		discuss the factor	s of run off.		5	CO3	L2
40	Compare hydro el	ectric and steam p			5	CO3	L2
41	Explain the functi	· · ·			5 5	CO3	L2
42 43	Explain fore bay Compare the force	ed draught and Inc	luced draught		<u>5</u> 5	CO3 CO3	L2 L2
44				duce a draught of	5	CO4	L2 L3
				draught fan with			

	following data flue gas temperature=250 ^o C Ambient temperature=25 ^o C Air supply per kg of fuel=18kg Mass of coal burnt per hour =1800kg Fan efficiency=85%	
--	---	--

D2. TEACHING PLAN - 2

Module-3

Title:	Solar energy	Appr Time:	8 Hrs
а	Course Outcomes	CO	Blooms
	At the end of the topic the student should be able to	-	Level
1	Illustrating the basic concepts of solar radiation and analyze working of solar pv models	CO5	L4
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Fundamentals; Solar Radiation; Estimation of solar radiation on horizontal and inclined surfaces.	CO5	L2
2	Measurement of solar radiation data, Solar Thermal systems.	CO5	L3
3	Basics of thermodynamics and heat transfer; Flat plate collector;	CO5	L3
4	Evacuated Tubular Collector; Solar air collector. Solar concentrator; Solar distillation; Solar cooker. Solar refrigeration and air conditioning.	CO5	L4
5	Thermal energy storage systems, Solar Photo voltaic systems.	CO5	L4
6	Solar cell Fundamentals; Characteristics and classification.	CO5	L4
7	Solar cell: Module, panel and Array construction.	CO5	L4
8	Photo voltaic thermal systems.	CO5	L4
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Residential Homes. Holiday Properties. Central Power Stations. Water Pumping, lighting, heating in the Developing World. Commercial buildings.	CO5	L3
2	Uses of power illustrating the basic concepts of solar radiation and analyze working of solar pv models generation and power conversion	CO5	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Sketch and explain the working of Pyranometer.	CO5	L3
2	Sketch and explain the principle of working of solar pond.	CO5	L3
3	Calculate the angle made by beam radiation with the normal to a flat plate collector on May1 at 0900h (local apparent time). The collector is located in New Delhi (28°35'N,	CO5	L4

	77°12T). It is tilted at an angle of 36 with the horizontal and is pointing down South.		
4	Name Solar Radiation measuring instruments and explain any one with neat sketch.	CO5	L4
5	The incident beam of sunlight has a power density of 0.9 kW/m2 in the direction of the	CO5	L4
	beam. The angle of incidence 0 is 60°. Calculate the power collected by the surface,		
	having a total flat area of 100 m ² .		
6	Explain Solar Desalination.	CO5	L3
7	Explain the methods of harnessing solar energy.	CO5	L3
8	Explain the Solar Cell Characteristics.	CO5	L3
9	Explain Different types of solar cookers.	CO5	L3
10	Define the following terms a)Latitude angle b)Declination C)Hour angle d)Azimuth angle	CO5	L4
	e)Zenith angle.		
e	Experiences	-	-

Module – 4

Title:	Wind energy and Tidal power	Appr Time:	8 Hrs
а	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Understanding the forms of energy conversion from alternate source.	CO6	L2
2	Able to describe the tidal and wave energy	CO7	L2 L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Wind Energy: Properties of wind, availability of wind energy in India,	CO6	L2
2	wind velocity and power from wind. Major problems associated with wind power, wind machines.	CO6	L3
3	Types of wind machines and their characteristics	CO6	L2
4	wind machines., horizontal and Vertical axis wind mills.	CO6	L3
5	Coefficient of performance of a wind mill rotor. Numerical Example.	CO6	L3
6	Tidal Power: Tides and waves as energy suppliers and their Mechanics.	CO7	L2
7	Fundamental characteristics of tidal power, harnessing tidal energy, limitations.	CO7	L2
8	Numerical Example	CO7	L3
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	_	-
1	useful forms of power, mainly electricity. Although not yet widely used, tidal energy has potential for future electricity generation.	CO6	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	What are the advantages and limitations of Tidal power generation?	CO6	L1
2	With a neat sketch, explain the closed cycle OTEC plant	CO6	L3
3	Briefly write a note on geothermal energy.	CO6	L2
4	With a neat diagram, explain the working principle of Rankine Cycle — OTEC power plant.	CO6	L3
5	Name the different Hydro Thermal convective system and explain any one system, with a neat sketch.	CO6	L2
6	Give a short note on tidal power plant.	CO6	L2
8	Explain briefly about OTEC plants.	CO6	L2
9	What is meant by Geothermal energy conversion?	CO7	L3
10	A hot water geothermal plant of the total flow type receives water at 225°C. The pressure at the turbine inlet is 10.5 kg/cm2. The plant uses a direct contact condenser that operates at 0.35 kg/cm2. The turbine has a polytrophic efficiency of 0.65 for a cycle net output of 10MW. Calculate by using stream table and Molier chart.(i) The hot water flow in kg/hr. (ii) The condenser cooling water flow in kg/hr at water temperature at 27°C.(iii) The cycle efficiency.(iv) The plant heat rate.	CO7	L3

1	1	Describe low and high tides. What are the different techniques of harnessing tidal energy?	CO7	L3
1	2	What are the advantages and limitations of Tidal power generation?	CO6	L1
1	3	With a neat sketch, explain the closed cycle OTEC plant	CO6	L3
(e	Experiences	-	-

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs C	Code:	15ME71	Sem:	VII	Marks:	30	Time:	5 minutes		
Cour	se:	Energy Eng	gineering	· · ·		·				
-	-	Note: Ans	wer all quest	tions, each c	arry equal ma	rks. Modu	ıle : 3, 4	Marks	СО	Level
1	а	Sketch and	Explain the	working of l	Pyranometer?			7	5	L2
	b	What are t	he main app	lications of	the Solar Pond	? Explain '	With the help of a ne	eat 8	5	L2
	diagram,a solar pond electric power plant?									
2	а	What is fla	t plate collec	tor? Write B	rief Description	n of Liquid	collector?	7	5	L2
	b	Explain wi disadvanta		hoto voltaic	working princ	pal? what	are the advantages a	nd 8	5	L2
3	a	Derive an l	Expression fo	or wind yelo	city and power	of the wind	19	8	6	L3
5			1		Savonius Wind		J.	7	6	L3 L2
	0			united the	OR	turomes.		,	0	
4	а	Explain the	e method of I	Harnessing ti	idal energy usin	g Double l	basin system?	7	7	L2
	b		he main com ges of tidal p		idal power plar	t and list a	any 6 advantages and	4 8	7	L2

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

			N	lodel Assignme	ent Questio	ns					
Crs Code:	15ME71	Sem:	VII	Marks:	5	Time:	90 – 120 r) – 120 minutes			
Course:	Energy E	ngineering		· · · ·	Modul	e : 3, 4					
Note: Eacl	n student to	answer 2-3 as	signments.	Each assignme	ent carries e	equal mark.					
SNo	USN		I	Assignment De	escription		Marks	Marks CO L			
1		Compare the	Flat plate of	collector and Fo	ocusing col	llector.	5	CO5	L2		
2		Mention the a conversion.	advantages	and disadvanta	ages of pho	oto-voltaic energy	5	CO5	L2		
3		Name the ins	truments u	sed for measuri	ing beam r	adiation.	5	CO5	L2		
4				y light hours at ar is 34 [.] 05 [/] N.	Bangalore	on January 1 and Ju	ly 5	C05	L3		
5						ar on 21 June and 2 re is 12°C 58N.	21 5	C05	L3		
6		What are the	basic featu	res required fo	r an ideal p	yranometer.	5	CO5	L3		
7		Name the bas	sic sun eart	h angles and ex	xplain.		5	C05	L3		
8		Explain the S	unshine re	corder.			5	C05	L3		
9		Explain Box	type solar o	cooker.			5	C05	L3		
10		Explain solar	cell constr	uction.			5	C05	L3		
11		Explain solar	pv module	2.			5	C05	L3		
12		Describe the	solar PV pa	anel and solar I	PV array.		5	C05	L3		
13		What are the	advantages	s and limitation	s of Tidal	power generation?	5	CO7	L2		
14		With a neat s	ketch, expl	ain the closed of	cycle OTE	C plant.	5	CO7	L3		
15		Briefly write	a note on g	geothermal ener	rgy.			CO7	L2		
16		With a neat of OTEC por		xplain the wor	king princi	iple of Rankine Cyc	le 5	CO7	L3		
17		Name the dif one system, v	•		nvective sy	ystem and explain an	ny 5	CO7	L2		

18	Give a short note on tidal power plant.	5	CO7	L2
19	Explain briefly about OTEC plants.		CO7	L3
20	What is meant by Geothermal energy conversion?	5	CO7	L2
21	A hot water geothermal plant of the total flow type receives water at 225°C. The pressure at the turbine inlet is 10.5 kg/cm2. The plant uses a direct contact condenser that operates at 0.35 kg/cm2. The turbine has a polytrophic efficiency of 0.65 for a cycle net output of10MW. Calculate by using stream table and Molier chart.(i) The hot water flow in kg/hr.(ii) The condenser cooling water flow in kg/hr at water temperature at 27°C.(iii) The cycle efficiency.(iv) The plant heat rate.	5	CO7	L3
22	Describe low and high tides. What are the different techniques of harnessing tidal energy?	5	CO7	L2
23	With a sketch explain the working of "Hot dry rock" geothermal plant.		CO6	L2
24	Describe low and high tides. What are the different techniques of harnessing tidal energy?	5	CO6	L3
25	Explain the major application of wind power.	5	CO6	L3
26	Explain the factors affecting the wind energy on surface of earth.	5	CO6	L3
27	Describe the variation of wind speed with height.	5	CO6	L3
28	Explain components of horizontal axis wind turbine.	5	CO6	L3
29	Describe the wind energy pro gramme in India.	5	CO6	L3
30	Explain the properties of wind energy.	5	CO6	L2
31	Derive the expression for wind velocity and wind power from wind.	5	CO6	L3
32	Explain the major problems associated with wind power.	5	CO6	L2
33	Wind blows with a velocity of 16m/s and 15 ^{.c} ,Assume 1 standard atmospheric pressure and turbine diameter=115m with operating speed=40 rpm at maximum efficiency calculate the following 1)Total power density in wind stream 2)Maximum obtainable power density 3)Reason ally obtainable power density 4)Total power 5)Torque and axial thrust	5	CO6	L4
34	What is the basic principle of wind energy.	5	CO6	L2
35	Explain how winds are created.	5	CO6	L3
36	Explain scope of Geothermal energy.	5	CO7	L2
37	What are the difficulties in tidal power plants.	5	CO7	L2
38	What is wave energy mention advantages and disadvantages.	5	CO6	L2
39	Define and classify geothermal sources.	5	CO7	L2
40	Explain single and double basin power plant.	5	CO7	L3

D3. TEACHING PLAN - 3

Module – 5

Title:	Biomass energy and Green energy	Appr	8Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Describe the photo synthesis process and Biomass gasification.	CO8	L2
2	Understanding the fuel cell concept and applications.	CO9	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
15ME71	Copyright ©2017. cAAS. All rights r	eserved.	

1	Biomass Energy: Introduction; Photosynthesis Process;	CO8	L2
2	Bio fuels; Biomass Resources.	CO8	L2
3	Biomass conversion technologies;	CO8	L2
4	Urban waste to energy. Conversion; Biomass gasification.	CO8	L2
5	Green Energy: Introduction: Fuel cells	CO9	L2
6	Overview; Classification of fuel cells. Fuel cell thermodynamics Nuclear, ocean.	CO9	L2
7	Geothermal energy applications	CO9	L2
8	Zero energy Concept.	CO9	L2
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Power application for rural electrification and captive use	CO8	L2
2	portable power generation, stationary power generation, and power for transportation.	CO9	L2
d	Review Questions	-	-
d -	Review Questions The attainment of the module learning assessed through following questions		-
d - 1			- - L2
-	The attainment of the module learning assessed through following questions	-	
- 1	The attainment of the module learning assessed through following questionsWhat are the factors affecting biogas generation? Explain any two factors.Explain with neat sketch of Indian Bio-gas plant.In brief write a note on energy plantation.	- CO8	L2 L2 L2
- 1 2	The attainment of the module learning assessed through following questionsWhat are the factors affecting biogas generation? Explain any two factors.Explain with neat sketch of Indian Bio-gas plant.	- CO8 CO8	L2 L2
- 1 2 3	The attainment of the module learning assessed through following questionsWhat are the factors affecting biogas generation? Explain any two factors.Explain with neat sketch of Indian Bio-gas plant.In brief write a note on energy plantation.Explain the difference between biomass and bio gas.Describe the factors affecting bio gas production.	- CO8 CO8 CO9	L2 L2 L2
$ \begin{array}{c} -\\ 1\\ 2\\ 3\\ 4 \end{array} $	The attainment of the module learning assessed through following questionsWhat are the factors affecting biogas generation? Explain any two factors.Explain with neat sketch of Indian Bio-gas plant.In brief write a note on energy plantation.Explain the difference between biomass and bio gas.	- CO8 CO8 CO9 CO8	L2 L2 L2 L2
$ \begin{array}{r} - \\ 1 \\ 2 \\ $	The attainment of the module learning assessed through following questionsWhat are the factors affecting biogas generation? Explain any two factors.Explain with neat sketch of Indian Bio-gas plant.In brief write a note on energy plantation.Explain the difference between biomass and bio gas.Describe the factors affecting bio gas production.	- CO8 CO8 CO9 CO8 CO8 CO8	L2 L2 L2 L2 L2 L2
$\begin{array}{c} - \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$	The attainment of the module learning assessed through following questionsWhat are the factors affecting biogas generation? Explain any two factors.Explain with neat sketch of Indian Bio-gas plant.In brief write a note on energy plantation.Explain the difference between biomass and bio gas.Describe the factors affecting bio gas production.With a neat sketch, explain the construction and working of KVIC digester.What are the stages in anaerobic digestion process? Explain.With neat sketch, explain the working of floating type digester	- CO8 CO8 CO9 CO8 CO8 CO8 CO8	L2 L2 L2 L2 L2 L2 L2 L2
$ \begin{array}{r} - \\ 1 \\ 2 \\ $	The attainment of the module learning assessed through following questionsWhat are the factors affecting biogas generation? Explain any two factors.Explain with neat sketch of Indian Bio-gas plant.In brief write a note on energy plantation.Explain the difference between biomass and bio gas.Describe the factors affecting bio gas production.With a neat sketch, explain the construction and working of KVIC digester.What are the stages in anaerobic digestion process? Explain.With neat sketch, explain the working of floating type digesterWhat are the factors affecting the generation of biogas in a digester?	- CO8 CO9 CO9 CO8 CO8 CO9 CO9 CO9	L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2
$ \begin{array}{c} - \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \end{array} $	The attainment of the module learning assessed through following questionsWhat are the factors affecting biogas generation? Explain any two factors.Explain with neat sketch of Indian Bio-gas plant.In brief write a note on energy plantation.Explain the difference between biomass and bio gas.Describe the factors affecting bio gas production.With a neat sketch, explain the construction and working of KVIC digester.What are the stages in anaerobic digestion process? Explain.With neat sketch, explain the working of floating type digester	- CO8 CO9 CO8 CO8 CO8 CO9 CO9 CO9 CO9	L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs C	Code:	15ME71	Sem:	VII	Marks:	30	Time:	75 minutes		
Cour	se:	ENERGY	ENGINEERIN	١G		÷				
-	-	Note: Ansv	wer any 2 qu	estions, eac	ch carry equal	marks.		Marks	CO	Level
1	а	Define Bio	gas? Describ	e the factor	s affecting Biog	as product	tion.	7	8	L2
	b	With a near	ith a neat sketch explain the construction and working of KVIC digester. Write							L2
		advantages	and disadvan							
					OR					
2	а	Define Bio	mass Gasifica	tion? Expla	ain the process i	nvolved ir	n it with neat sketch	. 7	8	L2
	b	Write a not	Write a note on a)Anaerobic fermentation b)Photosynthesis						8	L2
		c)Energy p	lantation d)Ef	fect of tem	perature on biog	gas generat	tion.			
3	а	Briefly exp	lain Alkaline	and Molter	n carbonate Fuel	Cell.		8	9	L3
	b	With a near	t sketch expla	in MHD po	ower generation.			7	9	L2
4	а	Explain briefly Geothermal energy ? Write advantages and disadvantages.							9	L2
	b	With a near	t sketch expla		7	9	L2			

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

			М	odel Assignme	ent Questio	ns			
Crs Co	ode: 15ME71	Sem:	VII	Marks:	5	Time: 9	0 − 120 n	ninutes	
Course		Y ENGINEE			Modul				
	Each student to	answer 2-3 a	-	-		equal mark.			
SNo	USN			Assignment De			Marks	CO	Level
1		What are factors.	the factors a	ffecting bioga	s generati	on? Explain any two	o 5	CO8	L2
2	2 Explain with neat sketch of Indian Bio-gas plant.					5	CO8	L2	
3		In brief wri	te a note on e	nergy plantation	on.			CO8	L2
4		Explain the	difference be	etween biomas	s and bio g	as.	5	CO8	L2
5		Describe th	e factors affe	cting bio gas p	roduction.		5	CO8	L2
6		With a nead digester.	at sketch, exp	plain the cons	struction a	nd working of KVI	5	CO8	L2
7		What are th	e stages in ar	naerobic digest	ion process	s? Explain.		CO8	L2
8		With neat s	ketch, explain	n the working of	of floating	type digester.	5	CO9	L2
9		What are th	e factors affe	cting the gener	ration of bi	ogas in a digester?	5	CO9	L2
10		Write the c	lassification of	of Biomass gas	ifiers.		5	CO9	L2
11		Explain the	working of I	Downdraught g	asifier, wit	h a neat sketch.		CO9	L2
12		Explain Ze	ro energy con	cepts.			5	CO9	L2
13		Explain con	ncept of Fuel	Cell.			5	CO9	L2
14		Explain the	working of I	Downdraft gasi	fier, with a	neat sketch.	5	CO9	L2
15		Explain fue	l cell thermo	dynamics Nucl	ear.			CO9	L2
16		Explain MI	HD .				5	CO9	L2
17				gy applications			5	CO9	L2
18		Differentiat	te between Fl	oating drum p	lant and fix	ked drum plant.	5	CO9	L2
19		Explain dig	estion,Pyroly	sis,and Hydro	gasificatio	n.	5	CO9	L2
20		With neces	sary equation	s explain gasif	ication pro	cess.	5	CO9	L2
21			e difference l ogas product		ass and bi	ogas.List the factor	s		
22				n of Biomass w			5	CO9	L2
				and disadvant	ages of gre	en energy	5	CO9	L2
			t and dry ferm				5	CO9	L2
				cessary for pho	otosynthesi	S	5	CO9	L2

F. EXAM PREPARATION

1. University Model Question Paper

Course	e:	ENERGY ENGI	NEERING				Month /	Year	May /2	019
Crs Co	ode:	15ME71	Sem:	VII	Marks:	80	Time:		180 minutes	
Modu	Note	Answer all FIVE	full questions.	All questions of	carry equal m	narks.		Marks	СО	Level
le										
1	а	Explain Review	of energy scena	ario in India?				6	CO1	L2
	b	Explain the Velor	x steam genera	tor, with a neat	sketch.			5	CO2	L2
	с	c Classify different types of Draughts and explain with a neat sketch the balanced							CO2	L2
		draught.								
				OR						
2	а	Sketch and expla	in a cyclone B	urner with adva	antages and d	isadvantages.?		5	CO1	L2
		Calculate the ma							CO2	L3
		produced is equa								
		temperature is 20					g. Neglect	t		
		the losses and tal	ke the diameter	of the chimney	y as 1.9 metre	2.				
	С	Explain a typica	l hydraulic ash	handling syste	m, with neat	sketch.		5		L3
3	а	Draw a line diag	ram to show the	e layout of dies	el power pla	nt.		5	C03	L3
		Explain different			^ ^			5	CO3	L3
	С	For a diesel power station. Discuss briefly about the following:							CO4	L3
		(i) Cooling system								
		(ii) Lubricating system.								

4	а	Define the term Hydrograph and Unit Hydrographs.	5	CO3	L3
	b	A catchment area of the dam used for hydroelectric station is 350 km2. The annual rainfall is 135cm. If 80% of water is used for power generation in the dam, calculate the capacity of power plant in MW. Assume that the turbine efficiency is 80% and generator efficiency is 85%. Neglect the losses.	6	CO4	L3
	с	State the important factors to be considered while selecting the site for hydro – electric power plant.	5	CO4	L3
5	а	Sketch and explain the working of Pyranometer.	5	CO5	L3
5	b	Sketch and explain the principle of working of solar pond.	5	005	L3
	c	Calculate the angle made by beam radiation with the normal to a flat plate collector on June1 at 0900h (local apparent time). The collector is located in New Delhi (28°35'N, 77°12T). It is tilted at an angle of 36 with the horizontal and is pointing down South.	6	CO5	L4
(-	OR Emploin the States Call Characteristics	5	COF	12
6	a b	Explain the Solar Cell Characteristics Explain Different types of solar cookers	5 5	CO5 CO5	L3 L3
	b c	Define the following terms a)Latitude angle b)Declination C)Hour angle d)Azimuth angle e)Zenith angle	6	C05	L3 L3
7	а	With a neat diagram, explain the working principle of Rankine Cycle — OTEC power plant.	6	CO6	L3
	b	What is meant by Geothermal energy conversion?	5	CO6	L3
	с	What are the advantages and limitations of Tidal power generation?	5	C06	L3
		OR			
8	а	A hot water geothermal plant of the total flow type receives water at 225°C. The pressure at the turbine inlet is 10.5 kg/cm2. The plant uses a direct contact condenser that operates at 0.35 kg/cm2. The turbine has a polytrophic efficiency of 0.65 for a cycle net output of10MW. Calculate by using stream table and Molier chart.(i) The hot water flow in kg/hr. (ii) The condenser cooling water flow in kg/hr at water temperature at 27°C.(iii) The cycle efficiency.(iv) The plant heat rate.	6	CO7	L3
	b	Describe low and high tides. What are the different techniques of harnessing tidal energy?	5	CO7	L3
	с	Explain the factors affecting the wind energy on surface of earth	5	CO7	L3
9	а	What are the factors affecting biogas generation? Explain any two factors.	5	CO8	L2
	b	Explain the difference between biomass and biogas.	5	CO8	L2
	с	Describe the factors affecting biogas production.	6	CO8	L2
		OR			
10	а	With a neat sketch, explain the construction and working of KVIC digester.	6	CO9	L2
	b	What are the stages in anaerobic digestion process? Explain.	5	CO9	L2
	с	Explain Photosynthesis process	5	C09	L2

2. SEE Important Questions

Course	e:	ENERGY ENGI	NEERING				Month / Year			019
Crs Code:		15ME71	Sem:	VII	Marks: 80 Time:			180 min		nutes
	Note	Answer all FIVE	full questions.	All questions of	carry equal r	narks.		-	-	
Modu	Qno.	mportant Question							CO	Year
le										
1	1	Explain the Velor	x steam generat	or, with a neat	sketch.			8	CO1	2016
	2	Classify differen	lassify different types of Draughts and explain with a neat sketch the balanced							2016
		draught.								
	3	Sketch and expla	in a cyclone Bu	urner with adva	antages and o	disadvantage	s.?	8	CO2	2014
	4	Explain a typical	hydraulic ash l	nandling syster	n, with neat	sketch.		8	CO3	2013
2	2 1 Draw a line diagram to show the layout of diesel power plant.							8	C03	2013
	2	Explain different	Explain different methods of starting the diesel engine.							2015
	3	For a diesel powe	or a diesel power station. Discuss briefly about the following:							2014
	-									

		(i) Cooling system			
	4	(ii) Lubricating system. Define the term Hydrograph and Unit Hydrographs.	8	CO3	2016
	5	A catchment area of the dam used for hydroelectric station is 350 km2. The annual rainfall is 135cm. If 80% of water is used for power generation in the dam, calculate the capacity of power plant in MW. Assume that the turbine efficiency is 80% and generator efficiency is 85%. Neglect the losses.	10	CO4	2015
	6	State the important factors to be considered while selecting the site for hydro – electric power plant.	8	CO4	2014
3	1	Sketch and explain the working of Pyranometer.	8	CO5	2017
	2	Sketch and explain the principle of working of solar pond.	8	CO5	2016
	3	Calculate the angle made by beam radiation with the normal to a flat plate collector on June1 at 0900h (local apparent time). The collector is located in New Delhi (28°35'N, 77°12T). It is tilted at an angle of 36 with the horizontal and is pointing down South.	8	CO5	2014
4	1	With a neat diagram, explain the working principle of Rankine Cycle — OTEC power plant.	10	CO6	2017
	2	What is meant by Geothermal energy conversion?	8	CO6	2013
	3	What are the advantages and limitations of Tidal power generation?	8	C06	2015
5	1	What are the factors affecting biogas generation? Explain any two factors.	10	CO8	2017
	2	Explain the difference between biomass and biogas.	8	CO8	2015
	3	Describe the factors affecting biogas production.	6	CO8	2014
	4	What are the stages in anaerobic digestion process? Explain.	8	CO9	2016
	5	Explain Photosynthesis process	6	CO9	2017

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Mo	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructio	Assessment
dul	(Split module content into 2 parts which have	Teaching	Learning	Bloo	Action	n	Methods to
e- #	similar concepts)	Hours	Levels for	ms'	Verbs for	Methods	Measure
	_		Content	Level	Learning	for	Learning
						Learning	
Α	В	С	D	E	F	G	Н
1	Thermal Energy conversion system: Review of	5	L1,L2	L2	Understan	Chalk	Assignment
	energy scenario in India, General Philosophy and				d	and board	
	need of Energy, Different Types of Fuels used for						
	steam generation. Equipment for burning coal in						
	lump form, stokers, different types, Oil burners,						
	Advantages and Disadvantages of using pulverized						
	fuel. Equipment for preparation and burning of						
	pulverized coal, unit system and bin System. Pul-						
	verized fuel furnaces, cyclone furnace, Coal and						
	ash handling, Generation of steam Using forced						
	circulation, high and supercritical pressures.						
1	Chimneys: Natural, forced, induced and balanced	4	L1,L2,L3	L3	Apply	Chalk and	Assignment
	draft. Calculations and numerical involving height				11 5	board	υ
	of chimney to produce a given draft. Cooling tow-						
	ers and Ponds. Accessories for the Steam genera-						
	tors such as Super heaters, De-super heater, control						
	of super heaters. Economizers, Air per-heaters and						
	re-heaters.						
2	Diesel Engine Power System:	3	L1,L2,L3	L3	Apply	Chalk and	Assignment
	Diesel Engine Power System: Applications of Diesel Engines in Power field.	5	L1,L2,L3	LJ	Apply	board	Assignment and Slip Test
	Method of starting Diesel engines. Oil heaters,					Juanu	and Sup lest
	intake and exhaust system, Layout of diesel power						
L	intake and exhaust system, Layout of dieser power						

	plant.						
2	Hydro-Electric Energy Hydro graphs, flow dura-	4	L1,L2,L3	L3	Apply	Chalk and	Assignment
	tion and mass curves. Pen stock, water hammer,					board	
	surge tanks, gates and valves. General layout of						
	hydel power plants.						
3	Solar Energy: Fundamentals; Solar Radiation;	4	L1,L2,L3	L3	Apply		Assignment
	Estimation of solar radiation on horizontal and					board	and slip test
	inclined surfaces.						
	Measurement of solar radiation data, Solar Thermal						
	systems. Introduction; Basics of thermodynamics						
	and heat transfer; Flat plate collector; Evacuated						
	Tubular Collector; Solar air collector. Solar concen-						
	trator; Solar distillation; Solar cooker. Solar refriger-						
	ation and air conditioning;Thermal energy storage						
3	systems, Solar Photo voltaic systems. Introduction; Solar cell Fundamentals; Characteris-	4	L1,L2	1.2	Understen	Challs and	Assignment
3	tics and classification. Solar cell:Module, panel and	4	L1,L2	L2	d	board	Assignment
	Array construction; Photo voltaic thermal systems.				a	board	
4	Wind Energy: Properties of wind, availability of	4	L1,L2,L3	L3	Apply	Chalk and	Assignment
4	wind energy in India, wind velocity and power from	4	L1,L2,L3	L3	дрргу	board	Assignment
	wind energy in findia, while velocity and power from wind. Major problems associated with wind power,					Joard	
	wind machines. Types of wind machines and their						
	characteristics, horizontal and Vertical axis wind						
	mills. Coefficient of performance of a wind mill						
	rotor. Numerical Example						
4	Tidal Power: Tides and waves as energy suppliers	4	L1,L2,L3	L3	Apply	Chalk and	Assignment
	and their mechanics. Fundamental characteristics of		, ,		11 2	board	U
	tidal power, harnessing tidal energy, limitations.						
5	Biomass Energy:Introduction;Photosynthesis Pro-	4	L1,L2	L2	Understan	Chalk and	Assignment
	cess; Biofuels; Biomass Resources. Biomass conver-				d	board	-
	sion technologies; Urban waste to energy. Conver-						
	sion; Biomass gasification. Green Energy:						
5	Introduction: Fuel cells: Overview; Classification of	4	L1,L2	L2	understand	Chalk and	Assignment
	fuel cells. Fuel cell thermodynamics Nuclear,					board	
	ocean. MHD, thermo electric and geothermal energy						
	applications:Zero energy Concept.						

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Mo	Learning or	Identified	Final Concept	Concept Justification	CO Components	Course Outcome
dul	Outcome from	Concepts	_	(What all Learning	(1.Action Verb,	
e- #	study of the	from		Happened from the	2.Knowledge,	
	Content or	Content		study of Content /	3.Condition /	Student Should be
	Syllabus	Syllabus		Syllabus. A short word	Methodology,	able to
				for learning or	4.Benchmark)	
				outcome)		
Α	Ι	J	K	L	М	N
1	-Thermal	-Energy	Energy	Different types of	- Understand	Understand energy
	Energy	conversion	conversion	energy conversion	- energy conversion	scenario, energy source
	conversion	system	system	methods	methodology	and utilization

	systems, Review energy scenario, Underfeed and overfeed strokers				-	
1	-	of stem		steam generators	- Understand the different - accessories in stem generators -	Applying the knowledge of conversion methods
2	•	Accessories of stem generators	Power system	Diesel engine power system	- Understanding power systems	Understand Diesel Engine working and layout
	-Layout of Hydro-Electric power plant,Hydro graph Mass curve flow duration curve	-energy storage	energy storage	Understand the storage of energy	- Understand - Energy storage -	Applying the knowledge of storage plants
3		Renewable energy	Renewable energy	Understand the renewable energy resources	- Understand - Renewable source 	Illustrating the basic concepts of solar radiation and analyze working of solar pv models
	Understanding principal of waves and tides ,Formation different types	-Forms of energy	Forms of energy	Understanding the different forms of energy	- Understand -Forms of energys - -	Understanding the forms of energy conversion from alternate source.
4	-Vertical axis wind mills and there working, Major problems associated with wind mill variation of power and velocity	Alternate source	Alternate source	Understanding alternate sources wind and tidal energy	- Understand - Alternate sources 	Able to describe the tidal and wave energy
5	-Biomass	Conversion technologie s	Conversion technologies	Understanding the different biomass conversion technologies	- Understand -Conversion technologies	Describe the photo synthesis process and Biomass gasification